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When public health practitioners use health statistics, sometimes they are 

interested in the actual number of health events, but more often they use the statistics to 
assess the true underlying risk of a health problem in the community.  Observed health 
statistics, that is, those counts, rates or percentages that are computed or estimated from 
health surveys, vital statistics registries, or other health surveillance systems, are not 
always an accurate reflection of the true underlying risk in the population.  Observed 
rates can vary from sample to sample or year to year, even when the true underlying risk 
remains the same. 

Statistics based on samples of a population are subject to sampling error.  
Sampling error refers to random variation that occurs because only a subset of the entire 
population is sampled and used to estimate a finding for the entire population.  It is often 
mis-termed "margin of error" in popular use.  Even those statistics based on health events 
in an entire population are based on an arbitrary sample of time (e.g., January 1 through 
December 31) and are thus subject to a certain amount of sampling error.  In general, 
sampling error gets larger when the sample, population or number of events is small.   

Statistical sampling theory is used to compute a confidence interval to provide an 
estimate of the potential discrepancy between the true and observed rates.  Understanding 
the potential size of that discrepancy can provide information about how to interpret the 
observed statistic.  For instance, if the state infant death rate of 5.94 increased to 6.03 in a 
one-year period, is that increase something that should cause concern?  If the smoking 
rate among teens decreased from 13% to 8%, is that cause for celebration?   

Technically speaking, the 95% confidence interval  indicates the range of values 
within which the statistic would fall 95% of the time if the researcher were to calculate 
the statistic (e.g., a percentage or rate) from an infinite number of samples of the same 
size, drawn from the same population.  In less technical language, the confidence interval 
is a range of values within which the Atrue@ value of the rate is expected to occur (with 
95% probability).  This document describes the most common methods for calculation of 
95% confidence intervals for some rates and estimates commonly used in public health. 
 
95% Confidence Interval for a Percentage From a Survey Sample: 
 

Although statistics from survey samples are not necessarily the most commonly-
used statistics in public health, they are a good starting point to begin talking about 
sampling theory.  To calculate a confidence interval for a percentage, one must first 
calculate the standard error of the percentage.  A percentage is also known as the mean 
of a binomial distribution.  Just in case you were wondering, the standard error of the 
mean is a measure of dispersion for the hypothetical distribution of means called the 
sampling distribution of the mean.  This is a distribution of means calculated from an 
infinite number of samples of a certain size (the same size as the sample from which the 



original percentage was measured), drawn from the same population as the original 
sample. 
 

Once you have calculated the standard error of the percentage, you must decide 
how large you want the confidence interval to be.  The most common alternative is a 95% 
confidence interval.  This is the width of the interval that includes the mean (the sampling 
distribution of the mean, mentioned above) 95% of the time.  In a little plainer language, 
a 95% confidence interval for a percentage is the range of scores within which the 
percentage will be found if you went back and got a different sample from the same 
population.  At least 95% of the time it will. 

 
Transforming the standard error into a 95% confidence interval is rather simple.  

Fortunately, the sampling distribution of the mean has a shape that is almost identical to 
what is known as the normal distribution.1  You need only multiply the standard error by 
the Z-score of the points in the normal distribution that exclude 2.5% of the distribution 
on either end (two-tailed).  That Z-score is 1.96.  A Z-score of 1.96 defines the 95% 
confidence interval.  A Z-score of 1.65 defines a 90% confidence interval. 
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standard error = square root ( ( (rate*(1-rate)) /sample n) ) 
 
Example:  13% of surveyed respondents indicated that they smoked cigarettes.  The 
sample consisted of 500 persons. 
 
standard error = square root ( ( (.13*(.87)) /500) ) =  .015  
 

                                                 
1 A distribution is a tool that is used in statistics to associate a statistic (e.g., a percentage, average, or other 
statistic) with its probability.  When researchers talk about a measure being "statistically significant," they 
have used a distribution to evaluate the probability of the statistic, and found that it would be improbable 
under ordinary conditions.  In most cases, we can rely on measures such as rates, averages, and proportions 
as having an underlying normal distribution, at least when the sample size is large enough. 



If you have another measure, such as an average, you must modify the formula to get the 
correct answer. 
 
Then the 95% confidence interval is:  

the percentage + 1.96 * standard error = .13 -/+ 1.96*.015 =  .0294, or 2.94% 
so the 95% confidence interval is 10.06% to 15.94% 

 
Small Samples 
 

If the sample from which the percentage was calculated was rather small, say, 
smaller than 60, then the shape of the sampling distribution of the mean is not the same as 
the shape of the normal distribution.  In this special case, we can use another distribution, 
known as the t distribution, that has a slightly different shape than the normal 
distribution.  

 
The procedures in this case are analogous to those above but the t-score comes 

from a family of distributions which depend on the “degrees of freedom.”  The number of 
degrees of freedom is defined as “n-1” where “n” is the size of the sample.  For a sample 
of size=30 the degrees of freedom is equal to 29.  So, for a 95% confidence interval, you 
must use the t -score associated with 29 degrees of freedom.  That particular t-score is 
2.045 (see Table 1.).  So you would multiply the standard error by 2.045 instead of 1.96 
to generate the 95% confidence interval. 

 
If our sample were a different size, say 20, then the degrees of freedom would be 

19, which is associated with a t-score of 2.093 for a 95% confidence interval. As you see 
the interval will get wider as our sample size is reduced. This reflects the uncertainty in 
our estimate of the variance in the population. For a 95% confidence interval with 9 
degrees of freedom the t-score is 2.262.  Table 1. lists the t-scores for specific degrees of 
freedom and sizes of confidence interval.  For a 95% confidence interval, you would use 
the t-score that defines the points on the distribution that excludes the most extreme 5% 
of the distribution, which is 0.025 on either end of the curve. 
 
Finite Populations 
 

If the survey sampled all or most of the members of the population, then using the 
finite population correction factor will improve (decrease) the calculated standard error of 
the mean.   
 
finite population correction factor = 1-f, where f is the sampling fraction 
f = n/N, or, simply the percentage of the population that was included in the sample 
 
standard error of the mean for a binomial distribution for a finite sample 
 = square root ( ( (rate*(1-rate)) /sample n)*(1-f) ) 
 
When the Percentage is Close to 0% or 100% 
 



 When the percentage is close to 0% or 100%, the formulas given above can result 
in illogical results - confidence limits that fall below 0% or above 100%.  A special 
formula is used to calculate asymmetric confidence limits in these cases. 
 
Complex Sample Designs 
 

The above formulas assume that the survey sample was a simple random sample.  
If the survey used a complex sample design (such as clustering within households or 
disproportionate sampling from various geographic regions), special techniques must be 
used to calculate the standard error of the mean.  Those techniques are accomplished 
using statistical software such as SAS or SUDAAN. 
 
95% Confidence Intervals When the Event Is Rare:  
 

In the case of rare events, the normal distribution no longer applies.  A different 
distribution, the Poisson distribution is used to model rare events, such as the "100 year 
flood."  It is also used to gauge the probability of infant mortality or cancer.  This 
distribution is not symmetric about its mean and so the associated confidence intervals 
will not be symmetric (the upper limit is farther from the estimate than is the lower limit, 
or the "plus" of the + is larger than the "minus").  

 
The Poisson distribution does, however, assume the shape of a normal 

distribution when the number of events is greater than about 100.  So we use a Poisson 
distribution for rare events (when the number of events is less than 100), but we can use 
the normal distribution when the number of events is greater than 100.   
 

In Table 2 you will find lower and upper confidence factors for use in calculating 
a 95% confidence interval for a rate based on a specified number of events, from 1 to 
100.  To calculate the confidence interval multiply the estimated rate by the confidence 
factor associated with the number of events on which the rate is based.  

 
For example, in a given geographic area, there were 722 births in a single year, 

and seven infant deaths.  The infant mortality rate in was 9.7 per 1,000 live births, 
calculated as [(7/722)*1,000].  The lower and upper confidence limits are calculated 
using the confidence factors found on Table 2.  The factors for seven events are .4021 
and 2.0604 for the lower and upper limits of the confidence interval, respectively. The 
lower limit of the confidence interval = 9.7*.4021 = 3.90, and the upper limit = 
9.7*2.0604 = 19.99, for a rate of 9.7 and a 95% confidence interval from 3.90 to 19.99.  
If this same rate had been based on 100 deaths then the confidence factors would be 
.8136 and 1.2163.  The lower limit would be 9.7*.8136, and the upper limit 9.7*1.2163 
for an estimate of 9.7 with a confidence interval from 7.89 to 11.80. This interval is much 
smaller due to the greater number of deaths on which the rate is based. 
 
Age-Adjusted Rates 
 



When comparing across geographic areas, some method of age-adjusting is 
typically used to control for area-to-area differences in health events that can be 
explained by differing ages of the area populations.  For example, an area that has an 
older population will have higher crude (not age-adjusted) rates for cancer, even though 
its exposure levels and cancer rates for specific age groups are the same as those of other 
areas.  One might incorrectly attribute the high cancer rates to some characteristic of the 
area other than age.  Age-adjusted rates control for age effects, allowing better 
comparability of rates across areas.  Direct standardization adjusts the age-specific rates 
observed in the small area to the age distribution of a standard population (Lilienfeld & 
Stolley, 1994). 
 

The confidence interval for directly standardized rates (DSR) can be computed as 
follows: 
 

CI(DSR) =  +1.96 * SE(DSR) * K 
   = +1.96 * SQRT(VAR(DSR)) * K 
   = +1.96 * SQRT(3Wi

2*Var(Ri)) * K 
   = +1.96 * SQRT(3Wi

2*((Ri * (1 - Ri))/Pi)) * K 
Where... 

SE(DSR) = the standard error of the directly standardized rate 
K =  a constant (e.g., 100,000) that is being used to communicate the rate 
Wsi

2 =  the population weight for the ith age group in the standard population 
Ri =   the age-specific death/disease rate in the ith age group of the small area 

population (# deaths/population count) 
Pi =   the population count in age group i of the small area 
 

 
Indirectly Age-Adjusted Rates 
 

The direct method can present problems when population sizes are particularly 
small.  Calculating directly standardized rates requires calculating age-group-specific 
rates, and for small areas these age-specific rates may be based on one or two events.  In 
such cases, indirect standardization of rates may be used.   

Indirectly standardized rates are based on the standard mortality or morbidity ratio 
(SMR) and the crude rate for a standard population.  Indirect standardization adjusts the 
overall standard population rate to the age distribution of the small area (Lilienfeld & 
Stolley, 1994).  It is technically appropriate to compare indirectly standardized rates only 
with the rate in the standard population, not with each other.   
 
An indirectly standardized death or disease rate (ISR) can be computed as: 
 

ISR = SMR*Rs 
  

SMR =  observed deaths/disease in the small area  =      D     =          D        
  expected deaths/disease in the small area           e       3(Rsi * Pi) 

Where... 



Rs =    the crude death/disease rate in the standard population 
Rsi =   the age-specific death/disease rate in age group i of the standard  

population (# deaths/population count) 
Pi =   the population count in age group i of the small area 

 
 

For indirectly standardized rates based on events that follow a Poisson 
distribution and for which the ratio of events to total population is small (<.3) and the 
sample size is large, the following two methods can be used to calculate confidence 
interval (Kahn & Sempos, 1989). 
 
(1) When the number of events >20: 
 

CI(ISR) =  (SMR + 1.96 SQRT(SMR/e)) * Rs * K 
 
Where... 

Rs =    the crude death/disease rate in the standard population 
K =  a constant (e.g., 100,000) that is being used to communicate the rate 
SMR =    observed deaths/disease in the small area  

    expected deaths/disease in the small area  
e =  expected deaths/disease in the small area  =  3(Rsi * Pi) 
Ri =   the age-specific death/disease rate in the ith age group of the small area 

population (# deaths/population count) 
Pi =   the population count in age group i of the small area 

 
(2) When the number of events <=20: 
 

LL(ISR) = (Lower limit for parameter estimate from Poisson table/e)) * Rs * K 
UL(ISR) = (Upper limit for parameter estimate from Poisson table/e)) * Rs * K 

 
Where LL is the lower confidence interval limit, and UL is the upper confidence interval 
limit. 

 

 

 



Table 1.  Upper critical values of Student's t distribution with < degrees of freedom 
 
          Probability of exceeding the critical value 
 
     <         0.10    0.05   0.025    0.01   0.001 
 
     1        3.078   6.314  12.706  31.821 318.313 
     2        1.886   2.920   4.303   6.965  22.327 
     3        1.638   2.353   3.182   4.541  10.215 
     4        1.533   2.132   2.776   3.747   7.173 
     5        1.476   2.015   2.571   3.365   5.893 
     6        1.440   1.943   2.447   3.143   5.208 
     7        1.415   1.895   2.365   2.998   4.782 
     8        1.397   1.860   2.306   2.896   4.499 
     9        1.383   1.833   2.262   2.821   4.296 
    10        1.372   1.812   2.228   2.764   4.143 
    11        1.363   1.796   2.201   2.718   4.024 
    12        1.356   1.782   2.179   2.681   3.929 
    13        1.350   1.771   2.160   2.650   3.852 
    14        1.345   1.761   2.145   2.624   3.787 
    15        1.341   1.753   2.131   2.602   3.733 
    16        1.337   1.746   2.120   2.583   3.686 
    17        1.333   1.740   2.110   2.567   3.646 
    18        1.330   1.734   2.101   2.552   3.610 
    19        1.328   1.729   2.093   2.539   3.579 
    20        1.325   1.725   2.086   2.528   3.552 
    21        1.323   1.721   2.080   2.518   3.527 
    22        1.321   1.717   2.074   2.508   3.505 
    23        1.319   1.714   2.069   2.500   3.485 
    24        1.318   1.711   2.064   2.492   3.467 
    25        1.316   1.708   2.060   2.485   3.450 
    26        1.315   1.706   2.056   2.479   3.435 
    27        1.314   1.703   2.052   2.473   3.421 
    28        1.313   1.701   2.048   2.467   3.408 
    29        1.311   1.699   2.045   2.462   3.396 
    30        1.310   1.697   2.042   2.457   3.385 
    31        1.309   1.696   2.040   2.453   3.375 
    32        1.309   1.694   2.037   2.449   3.365 
    33        1.308   1.692   2.035   2.445   3.356 
    34        1.307   1.691   2.032   2.441   3.348 
    35        1.306   1.690   2.030   2.438   3.340 
    36        1.306   1.688   2.028   2.434   3.333 
    37        1.305   1.687   2.026   2.431   3.326 
    38        1.304   1.686   2.024   2.429   3.319 
    39        1.304   1.685   2.023   2.426   3.313 
    40        1.303   1.684   2.021   2.423   3.307 
    41        1.303   1.683   2.020   2.421   3.301 
    42        1.302   1.682   2.018   2.418   3.296 
    43        1.302   1.681   2.017   2.416   3.291 
    44        1.301   1.680   2.015   2.414   3.286 
    45        1.301   1.679   2.014   2.412   3.281 
    46        1.300   1.679   2.013   2.410   3.277 
    47        1.300   1.678   2.012   2.408   3.273 
    48        1.299   1.677   2.011   2.407   3.269 
    49        1.299   1.677   2.010   2.405   3.265 
    50        1.299   1.676   2.009   2.403   3.261 
    51        1.298   1.675   2.008   2.402   3.258 
    52        1.298   1.675   2.007   2.400   3.255 
    53        1.298   1.674   2.006   2.399   3.251 
    54        1.297   1.674   2.005   2.397   3.248 
    55        1.297   1.673   2.004   2.396   3.245 
    56        1.297   1.673   2.003   2.395   3.242 
    57        1.297   1.672   2.002   2.394   3.239 
    58        1.296   1.672   2.002   2.392   3.237 
    59        1.296   1.671   2.001   2.391   3.234 
    60        1.296   1.671   2.000   2.390   3.232



Table 2.  95% Confidence Interval Factors for Poisson-Distributed Events 
 

number of 
events 

95% 
Confidence 
Interval, 
Lower Limit 

Factor 

95% 
Confidence 
Interval, 
Upper Limit 

Factor 

 

number of 
events 

95% 
Confidence 
Interval, 
Lower Limit 

Factor 

95% 
Confidence 
Interval, 
Upper Limit 

Factor 
0 0.0000 3.7000  51 0.7446 1.3148 
1 0.0253 5.5716  52 0.7468 1.3114 
2 0.1211 3.6123  53 0.7491 1.3080 
3 0.2062 2.9224  54 0.7512 1.3048 
4 0.2725 2.5604  55 0.7533 1.3016 
5 0.3247 2.3337  56 0.7554 1.2986 
6 0.3670 2.1766  57 0.7574 1.2956 
7 0.4021 2.0604  58 0.7593 1.2927 
8 0.4317 1.9704  59 0.7612 1.2899 
9 0.4573 1.8983  60 0.7631 1.2872 
10 0.4795 1.8390  61 0.7649 1.2845 
11 0.4992 1.7893  62 0.7667 1.2820 
12 0.5167 1.7468  63 0.7684 1.2794 
13 0.5325 1.7100  64 0.7701 1.2770 
14 0.5467 1.6778  65 0.7718 1.2746 
15 0.5597 1.6493  66 0.7734 1.2722 
16 0.5716 1.6239  67 0.7750 1.2700 
17 0.5825 1.6011  68 0.7765 1.2677 
18 0.5927 1.5804  69 0.7781 1.2656 
19 0.6021 1.5616  70 0.7795 1.2634 
20 0.6108 1.5444  71 0.7810 1.2614 
21 0.6190 1.5286  72 0.7824 1.2593 
22 0.6267 1.5140  73 0.7838 1.2573 
23 0.6339 1.5005  74 0.7852 1.2554 
24 0.6407 1.4879  75 0.7866 1.2535 
25 0.6471 1.4762  76 0.7879 1.2516 
26 0.6532 1.4652  77 0.7892 1.2498 
27 0.6590 1.4549  78 0.7905 1.2480 
28 0.6645 1.4453  79 0.7917 1.2463 
29 0.6697 1.4362  80 0.7929 1.2446 
30 0.6747 1.4276  81 0.7941 1.2429 
31 0.6795 1.4194  82 0.7953 1.2413 
32 0.6840 1.4117  83 0.7965 1.2397 
33 0.6884 1.4044  84 0.7976 1.2381 
34 0.6925 1.3974  85 0.7988 1.2365 
35 0.6965 1.3908  86 0.7999 1.2350 
36 0.7004 1.3844  87 0.8010 1.2335 
37 0.7041 1.3784  88 0.8020 1.2320 
38 0.7077 1.3726  89 0.8031 1.2306 
39 0.7111 1.3670  90 0.8041 1.2292 
40 0.7144 1.3617  91 0.8051 1.2278 
41 0.7176 1.3566  92 0.8061 1.2264 
42 0.7207 1.3517  93 0.8071 1.2251 
43 0.7237 1.3470  94 0.8081 1.2237 
44 0.7266 1.3425  95 0.8091 1.2224 
45 0.7294 1.3381  96 0.8100 1.2212 
46 0.7321 1.3339  97 0.8109 1.2199 
47 0.7348 1.3298  98 0.8118 1.2187 
48 0.7373 1.3259  99 0.8128 1.2175 
49 0.7398 1.3221  100 0.8136 1.2163 
50 0.7422 1.3184     

 


